论文标题
使用神经网络预测石墨烯的磁边行为
Predicting magnetic edge behaviour in graphene using neural networks
论文作者
论文摘要
石墨烯中的锯齿形边缘附近的磁矩可以实现具有自定义自旋特性的复杂纳米结构。但是,计算成本将理论研究限制在小型或完美的周期性结构中。在这里,我们证明了仅使用几何输入的机器学习方法可以准确估算磁矩轮廓,从而可以快速模拟任意大型和无序的系统。与平均田间哈伯德计算发现了极好的一致性,并且使用估计的曲线复制了重要的电子,磁性和传输性能。这种方法可以快速准确地预测实验尺度系统的磁矩,并加快对Spintronic应用的有希望的几何形状的识别。尽管机器学习方法的多体相互作用在很大程度上仅限于在很小的尺度上的复杂模型的精确解决方案,但这项工作确定它们可以在非常大的尺度上以均值的准确性水平成功地应用。
Magnetic moments near zigzag edges in graphene allow complex nanostructures with customised spin properties to be realised. However, computational costs restrict theoretical investigations to small or perfectly periodic structures. Here we demonstrate that a machine-learning approach, using only geometric input, can accurately estimate magnetic moment profiles, allowing arbitrarily large and disordered systems to be quickly simulated. Excellent agreement is found with mean-field Hubbard calculations, and important electronic, magnetic and transport properties are reproduced using the estimated profiles. This approach allows the magnetic moments of experimental-scale systems to be quickly and accurately predicted, and will speed-up the identification of promising geometries for spintronic applications. While machine-learning approaches to many-body interactions have largely been limited to exact solutions of complex models at very small scales, this work establishes that they can be successfully applied at very large scales at mean-field levels of accuracy.