论文标题
具有生物学上合理培训方法的物理深度学习
Physical Deep Learning with Biologically Plausible Training Method
论文作者
论文摘要
对人工智能进一步进步的不断增长的需求激发了基于模拟物理设备的非常规计算的研究。尽管此类计算设备模仿了大脑启发的模拟信息处理,但学习过程仍然依赖于优化的数字处理方法,例如反向传播。在这里,我们通过扩展一种称为直接反馈对准的生物学上合理的培训算法来展示物理深度学习。由于所提出的方法是基于随机投影和任意非线性激活的,因此我们可以在不了解物理系统的情况下训练物理神经网络。此外,我们可以在简单且可扩展的物理系统上模仿和加速该培训的计算。我们使用层次连接的光电复发性神经网络(称为深储库计算机)证明了概念验证。通过构建FPGA辅助的光电台面,我们确认了在基准上具有竞争性能的加速计算的潜力。我们的结果为神经形态计算的训练和加速提供了实用的解决方案。
The ever-growing demand for further advances in artificial intelligence motivated research on unconventional computation based on analog physical devices. While such computation devices mimic brain-inspired analog information processing, learning procedures still relies on methods optimized for digital processing such as backpropagation. Here, we present physical deep learning by extending a biologically plausible training algorithm called direct feedback alignment. As the proposed method is based on random projection with arbitrary nonlinear activation, we can train a physical neural network without knowledge about the physical system. In addition, we can emulate and accelerate the computation for this training on a simple and scalable physical system. We demonstrate the proof-of-concept using a hierarchically connected optoelectronic recurrent neural network called deep reservoir computer. By constructing an FPGA-assisted optoelectronic benchtop, we confirmed the potential for accelerated computation with competitive performance on benchmarks. Our results provide practical solutions for the training and acceleration of neuromorphic computation.