论文标题

从异质细胞种群中学习各个轨迹的各向异性相互作用规则

Learning Anisotropic Interaction Rules from Individual Trajectories in a Heterogeneous Cellular Population

论文作者

Messenger, Daniel A., Wheeler, Graycen E., Liu, Xuedong, Bortz, David M.

论文摘要

事实证明,相互作用的粒子系统(IPS)模型在描述生物的空间运动方面非常成功。但是,直接从数据中推断交互规则已证明具有挑战性。在方程发现的领域中,弱形式的非线性动力学(WSINDY)方法的稀疏识别也被证明在识别复杂系统的管理方程式上是非常有效的,即使在存在实质性噪声的情况下也是如此。由IPS模型的成功描述生物体的空间运动的动机,我们为二阶IPS开发了Wsindy,以模拟细胞社区的运动。具体而言,我们的方法了解了控制异构迁移细胞种群动态的定向相互作用规则。我们没有将细胞轨迹数据汇总到单个最佳拟合模型中,而是学习每个单个单元的模型。然后,这些模型可以根据模型中存在的相互作用的活动类别进行有效分类。从这些分类中,在层次上构建了汇总模型,以同时识别种群中存在的不同种类,并确定每个物种的最佳合适模型。我们证明了该方法在几种测试方案上的效率和熟练程度,这是由常见的细胞迁移实验所激发的。

Interacting particle system (IPS) models have proven to be highly successful for describing the spatial movement of organisms. However, it has proven challenging to infer the interaction rules directly from data. In the field of equation discovery, the Weak form Sparse Identification of Nonlinear Dynamics (WSINDy) methodology has been shown to be very computationally efficient for identifying the governing equations of complex systems, even in the presence of substantial noise. Motivated by the success of IPS models to describe the spatial movement of organisms, we develop WSINDy for second order IPSs to model the movement of communities of cells. Specifically, our approach learns the directional interaction rules that govern the dynamics of a heterogeneous population of migrating cells. Rather than aggregating cellular trajectory data into a single best-fit model, we learn the models for each individual cell. These models can then be efficiently classified according to the active classes of interactions present in the model. From these classifications, aggregated models are constructed hierarchically to simultaneously identify different species of cells present in the population and determine best-fit models for each species. We demonstrate the efficiency and proficiency of the method on several test scenarios, motivated by common cell migration experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源