论文标题
局部置换多项式和e-klenian群体的作用
Local permutation polynomials and the action of e-Klenian groups
论文作者
论文摘要
有限领域的置换多项式在编码理论,密码学和组合学中具有许多应用。在本文的第一部分中,我们基于一类没有固定点的对称亚组的新局部置换多项式家庭,即所谓的e-klenian群体。在第二部分中,我们使用了一个事实,即双变量局部置换多项式定义拉丁正方形,讨论相互正交拉丁正方形(MOL)的几种结构,尤其是我们在大小上提供了一个新的摩尔家族。
Permutation polynomials of finite fields have many applications in Coding Theory, Cryptography and Combinatorics. In the first part of this paper we present a new family of local permutation polynomials based on a class of symmetric subgroups without fixed points, the so called e-Klenian groups. In the second part we use the fact that bivariate local permutation polynomials define Latin Squares, to discuss several constructions of Mutually Orthogonal Latin Squares (MOLS) and, in particular, we provide a new family of MOLS on size a prime power.