论文标题
边缘状态和异常SUSY在(2+1) - 维度麦克斯韦·切恩·西蒙斯理论
Edge states and anomalous SUSY in (2+1)-dimensional Maxwell Chern-Simons theory
论文作者
论文摘要
在$(2+1)$ - 尺寸的麦克斯韦 - 切尔 - 切尔姆斯理论中,加上费米亚和标量,它具有$ \ mathcal {n} = 2 $ susy在没有边界的情况下,空间边界的插入使超对称性破坏了超对称。我们表明,仅由哈密顿量的自我相关性允许的边界条件的一个子集可以保留部分$ \ Mathcal {n} = 1 $ supersymmetry,而对于其余的边界条件,Susy完全损坏了。在后一种情况下,我们展示了两种截然不同的破坏机制。对于某些破裂的边界条件,该动作的SUSY变化不会消失,这明确破坏了Susy。尽管在某些其他边界条件下,尽管在SUSY转化下采取了行动不变性,但在汉密尔顿域的域中,未配对的费米克边缘状态导致超对称性的异常断裂。
In a $(2+1)$-dimensional Maxwell-Chern-Simons theory coupled with a fermion and a scalar, which has $\mathcal{N}=2$ SUSY in absence of the boundary, the insertion of a spatial boundary breaks the supersymmetry. We show that only a subset of the boundary conditions allowed by the self-adjointness of the Hamiltonian can preserve partial $\mathcal{N}=1$ supersymmetry, while for the remaining boundary conditions SUSY is completely broken. In the latter case, we demonstrate two distinct SUSY-breaking mechanisms. For some of the SUSY-breaking boundary conditions, the SUSY variation of the action does not vanish which explicitly breaks SUSY. While for certain other boundary conditions, despite the invariance of action under SUSY transformations, unpaired fermionic edge states in the domain of the Hamiltonian leads to an anomalous breaking of the supersymmetry.