论文标题
部分可观测时空混沌系统的无模型预测
Directly wireless communication of human minds via non-invasive brain-computer-metasurface platform
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Brain-computer interfaces (BCIs), invasive or non-invasive, have projected unparalleled vision and promise for assisting patients in need to better their interaction with the surroundings. Inspired by the BCI-based rehabilitation technologies for nerve-system impairments and amputation, we propose an electromagnetic brain-computer-metasurface (EBCM) paradigm, regulated by human's cognition by brain signals directly and non-invasively. We experimentally show that our EBCM platform can translate human's mind from evoked potentials of P300-based electroencephalography to digital coding information in the electromagnetic domain non-invasively, which can be further processed and transported by an information metasurface in automated and wireless fashions. Directly wireless communications of the human minds are performed between two EBCM operators with accurate text transmissions. Moreover, several other proof-of-concept mind-control schemes are presented using the same EBCM platform, exhibiting flexibly-customized capabilities of information processing and synthesis like visual-beam scanning, wave modulations, and pattern encoding.