论文标题

TTOPT:最大体积量化张量的基于火车的优化及其在增强学习中的应用

TTOpt: A Maximum Volume Quantized Tensor Train-based Optimization and its Application to Reinforcement Learning

论文作者

Sozykin, Konstantin, Chertkov, Andrei, Schutski, Roman, Phan, Anh-Huy, Cichocki, Andrzej, Oseledets, Ivan

论文摘要

我们提出了一种基于有效量化的张量列表表示和广义最大矩阵音量原理的组合进行优化的新过程。我们证明了新的张量火车优化器(TTOPT)方法在各种任务中的适用性,从最小化多维功能到增强学习。我们的算法与流行的基于进化的方法进行了比较,并以函数评估或执行时间的数量(通常是大幅度的余量)优于它们。

We present a novel procedure for optimization based on the combination of efficient quantized tensor train representation and a generalized maximum matrix volume principle. We demonstrate the applicability of the new Tensor Train Optimizer (TTOpt) method for various tasks, ranging from minimization of multidimensional functions to reinforcement learning. Our algorithm compares favorably to popular evolutionary-based methods and outperforms them by the number of function evaluations or execution time, often by a significant margin.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源