论文标题
朝着以过程为导向,模块化和多功能的问题产生满足教育需求
Towards Process-Oriented, Modular, and Versatile Question Generation that Meets Educational Needs
论文作者
论文摘要
NLP驱动的自动问题生成(QG)技术具有节省教育者的时间并受益于学生学习的巨大教学潜力。但是,迄今为止,QG系统尚未在教室中被广泛采用。在这项工作中,我们旨在确定关键障碍,并通过了解讲师如何构建问题并识别触摸点以增强基本的NLP模型来提高自动QG技术的可用性。我们与7所不同大学的11位讲师进行了深入的需求进行研究,并总结了他们在提出问题时的思维过程和需求。尽管讲师对使用NLP系统来支持问题设计表现出极大的兴趣,但他们都没有在实践中使用此类工具。他们诉诸于多种信息来源,从域知识到学生的误解,所有这些信息都缺少了当今QG系统中的所有信息。我们认为,建立有效的人NLP协作QG系统,强调讲师控制和解释性对于现实世界中的采用至关重要。我们呼吁QG系统提供面向过程的支持,使用模块化设计并处理各种输入来源。
NLP-powered automatic question generation (QG) techniques carry great pedagogical potential of saving educators' time and benefiting student learning. Yet, QG systems have not been widely adopted in classrooms to date. In this work, we aim to pinpoint key impediments and investigate how to improve the usability of automatic QG techniques for educational purposes by understanding how instructors construct questions and identifying touch points to enhance the underlying NLP models. We perform an in-depth need finding study with 11 instructors across 7 different universities, and summarize their thought processes and needs when creating questions. While instructors show great interests in using NLP systems to support question design, none of them has used such tools in practice. They resort to multiple sources of information, ranging from domain knowledge to students' misconceptions, all of which missing from today's QG systems. We argue that building effective human-NLP collaborative QG systems that emphasize instructor control and explainability is imperative for real-world adoption. We call for QG systems to provide process-oriented support, use modular design, and handle diverse sources of input.