论文标题

热力学上一致的机器学习的内部状态可变方法,用于数据依赖路径依赖材料的数据驱动建模

Thermodynamically Consistent Machine-Learned Internal State Variable Approach for Data-Driven Modeling of Path-Dependent Materials

论文作者

He, Xiaolong, Chen, Jiun-Shyan

论文摘要

由于困难在制定了数学表达式和内部状态变量(ISVS)管理路径依赖性行为时,通过现象学模型对复杂材料的路径依赖性行为的表征和建模仍然具有挑战性。数据驱动的机器学习模型,例如深神经网络和复发性神经网络(RNN),已成为可行的替代方法。但是,纯黑框数据驱动的模型将输入映射到输出而不考虑基础物理学的概括性不稳定和不准确的概括性能。这项研究提出了一种基于可测量材料状态的路径依赖性材料的机器学习物理学的数据驱动的组成型建模方法。所提出的数据驱动的本构模型是通过考虑通用热力学原理的考虑,其中ISV对材料路径依赖性必不可少的是从RNN的隐藏状态自动推断出来的。描述数据驱动的机器学习ISV的演变的RNN遵循热力学的第二定律。为了增强RNN模型的鲁棒性和准确性,将随机性引入模型训练。已经研究了RNN历史步骤数量,内部状态维度,模型复杂性和应变增量对模型性能的影响。通过使用实验应力 - 应变数据在环状剪切负荷下对土壤材料行为进行建模来评估所提出方法的有效性。

Characterization and modeling of path-dependent behaviors of complex materials by phenomenological models remains challenging due to difficulties in formulating mathematical expressions and internal state variables (ISVs) governing path-dependent behaviors. Data-driven machine learning models, such as deep neural networks and recurrent neural networks (RNNs), have become viable alternatives. However, pure black-box data-driven models mapping inputs to outputs without considering the underlying physics suffer from unstable and inaccurate generalization performance. This study proposes a machine-learned physics-informed data-driven constitutive modeling approach for path-dependent materials based on the measurable material states. The proposed data-driven constitutive model is designed with the consideration of universal thermodynamics principles, where the ISVs essential to the material path-dependency are inferred automatically from the hidden state of RNNs. The RNN describing the evolution of the data-driven machine-learned ISVs follows the thermodynamics second law. To enhance the robustness and accuracy of RNN models, stochasticity is introduced to model training. The effects of the number of RNN history steps, the internal state dimension, the model complexity, and the strain increment on model performances have been investigated. The effectiveness of the proposed method is evaluated by modeling soil material behaviors under cyclic shear loading using experimental stress-strain data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源