论文标题

MaleFisenta:ISM中细丝识别和方向的机器学习

MaLeFiSenta: Machine Learning for FilamentS Identification and orientation in the ISM

论文作者

Alina, D., Shomanov, A., Baimukhametova, S.

论文摘要

细丝识别成为解决天文学各个领域的基本问题的关键步骤。然而,现有的灯丝识别算法至关重要,需要单个参数化。在这项研究中,我们旨在调整神经网络方法,以阐述最佳的细丝识别模型,而这些模型不需要给定的天文图。首先,我们根据普朗克和赫歇尔太空望远镜获得的星际介质的最常用地图创建了训练样品,以及原子氢All-Sky Alling Hi4Pi。我们使用了滚动霍夫变换(一种广泛使用的算法用于细丝识别)来产生训练输出。在下一步中,我们训练了不同的神经网络模型,并发现蒙版R-CNN和U-NET体系结构的组合最适合于细丝识别和确定其方向角度。我们表明,在仅100张地图的相对较小的训练样本上,神经网络训练可能会有效地进行。我们的方法消除了参数化偏差,并促进了大数据集的细丝识别和角度的确定。

Filament identification became a key step to tackling fundamental problems in various fields of Astronomy. Nevertheless, existing filament identification algorithms are critically user-dependent and require individual parametrization. In this study, we aimed at adapting the neural networks approach to elaborate the best model for filament identification that would not require fine-tuning for a given astronomical map. First, we created training samples based on the most commonly used maps of the interstellar medium obtained by Planck and Herschel space telescopes and the atomic hydrogen all-sky survey HI4PI. We used the Rolling Hough Transform, a widely used algorithm for filament identification, to produce training outputs. In the next step, we trained different neural network models and discovered that a combination of the Mask R-CNN and U-Net architecture is most appropriate for filament identification and determination of their orientation angles. We showed that neural network training might be performed efficiently on a relatively small training sample of only around 100 maps. Our approach eliminates the parametrization bias and facilitates filament identification and angle determination on large data sets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源