论文标题

Deepgravilens:用于分类重力镜头数据的多模式结构

DeepGraviLens: a Multi-Modal Architecture for Classifying Gravitational Lensing Data

论文作者

Vago, Nicolò Oreste Pinciroli, Fraternali, Piero

论文摘要

重力镜头是巨大的身体产生的相对论效应,它弯曲了周围的时空。这是天体物理学中的一个深入研究的主题,允许验证理论相对论结果并研究微弱的天体物理对象,否则看不到。近年来,机器学习方法已应用于通过检测由与亮度变化时间序列相关的图像组成的数据集中的透镜效应来支持重力镜头现象的分析。但是,最先进的方法要么仅考虑图像,要么忽略时间序列数据,要么在最困难的数据集上实现相对较低的精度。本文介绍了DeepGravilens,这是一个新型的多模式网络,该网络对属于一种非镜头系统类型和三种透镜系统类型的时空数据进行了分类。它超过了当前的艺术精度结果$ \ \%$至$ \ \ \%$,具体取决于考虑的数据集。这样的改进将使在即将进行的天体物理调查中对镜头对象的分析加速,这将利用收集的数据(例如,从Vera C. rubin天文台)利用。

Gravitational lensing is the relativistic effect generated by massive bodies, which bend the space-time surrounding them. It is a deeply investigated topic in astrophysics and allows validating theoretical relativistic results and studying faint astrophysical objects that would not be visible otherwise. In recent years Machine Learning methods have been applied to support the analysis of the gravitational lensing phenomena by detecting lensing effects in data sets consisting of images associated with brightness variation time series. However, the state-of-art approaches either consider only images and neglect time-series data or achieve relatively low accuracy on the most difficult data sets. This paper introduces DeepGraviLens, a novel multi-modal network that classifies spatio-temporal data belonging to one non-lensed system type and three lensed system types. It surpasses the current state of the art accuracy results by $\approx 3\%$ to $\approx 11\%$, depending on the considered data set. Such an improvement will enable the acceleration of the analysis of lensed objects in upcoming astrophysical surveys, which will exploit the petabytes of data collected, e.g., from the Vera C. Rubin Observatory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源