论文标题
Feddkd:通过分散知识蒸馏的联合学习
FedDKD: Federated Learning with Decentralized Knowledge Distillation
论文作者
论文摘要
神经网络中联邦学习的表现通常受数据分布的异质性的影响。对于表现出色的全球模型,按照大多数现有的联合学习算法完成的本地模型的加权平均值,可能不能保证与神经网络图空间中本地模型保持一致。在本文中,我们提出了一个具有分散知识蒸馏过程(FedDKD)(即服务器上没有数据)的联合学习的新颖框架。 FedDKD引入了一个分散的知识蒸馏(DKD)模块,以提炼本地模型的知识,以通过基于在损失功能中定义的差异度量来接近神经网络图的平均值来训练全局模型,而不是仅在文献中所做的平均参数。在各种异质数据集上进行的数字实验表明,FedDKD在几个DKD步骤中以更有效的沟通和培训优于最先进的方法,尤其是在某些极为异构的数据集上。
The performance of federated learning in neural networks is generally influenced by the heterogeneity of the data distribution. For a well-performing global model, taking a weighted average of the local models, as done by most existing federated learning algorithms, may not guarantee consistency with local models in the space of neural network maps. In this paper, we propose a novel framework of federated learning equipped with the process of decentralized knowledge distillation (FedDKD) (i.e., without data on the server). The FedDKD introduces a module of decentralized knowledge distillation (DKD) to distill the knowledge of the local models to train the global model by approaching the neural network map average based on the metric of divergence defined in the loss function, other than only averaging parameters as done in literature. Numeric experiments on various heterogeneous datasets reveal that FedDKD outperforms the state-of-the-art methods with more efficient communication and training in a few DKD steps, especially on some extremely heterogeneous datasets.