论文标题

从卫星数据中进行机器学习的云类,用于以过程为导向的气候模型评估

Machine-learned cloud classes from satellite data for process-oriented climate model evaluation

论文作者

Kaps, A., Lauer, A., Camps-Valls, G., Gentine, P., Gómez-Chova, L., Eyring, V.

论文摘要

云在调节气候变化方面起着关键作用,但在地球系统模型(ESMS)中很难模拟。改善云的表示是实现更强大的气候变化预测的关键任务之一。这项研究介绍了一个新的基于机器学习的框架,该框架依靠卫星观测来提高对气候模型中云及其相关过程的理解。所提出的方法能够将已建立的云类型的分布分配给粗数据。它促进了对ESM中云的更客观评估,并提高了云过程分析的一致性。该方法是基于由深层神经网络标记的卫星数据建立的,其云类型由世界气象组织(WMO)定义,使用CloudSat的云类型标签作为地面真理。该方法适用于数据集,其中包含有关物理云变量的信息,可与MODIS卫星数据相当,并且具有足够高的时间分辨率。我们将该方法应用于云\ _CCI项目(ESA气候变化计划)的替代卫星数据,将粗粒粒度用于气候模型的典型分辨率。所得的云类型分布在物理上是一致的,并且ESM的典型水平分辨率足以应用我们的方法。我们建议输出我们方法对未来ESM数据评估所需的关键变量。这将使使用标记的卫星数据在气候模型中对云进行更系统的评估。

Clouds play a key role in regulating climate change but are difficult to simulate within Earth system models (ESMs). Improving the representation of clouds is one of the key tasks towards more robust climate change projections. This study introduces a new machine-learning based framework relying on satellite observations to improve understanding of the representation of clouds and their relevant processes in climate models. The proposed method is capable of assigning distributions of established cloud types to coarse data. It facilitates a more objective evaluation of clouds in ESMs and improves the consistency of cloud process analysis. The method is built on satellite data from the MODIS instrument labelled by deep neural networks with cloud types defined by the World Meteorological Organization (WMO), using cloud type labels from CloudSat as ground truth. The method is applicable to datasets with information about physical cloud variables comparable to MODIS satellite data and at sufficiently high temporal resolution. We apply the method to alternative satellite data from the Cloud\_cci project (ESA Climate Change Initiative), coarse-grained to typical resolutions of climate models. The resulting cloud type distributions are physically consistent and the horizontal resolutions typical of ESMs are sufficient to apply our method. We recommend outputting crucial variables required by our method for future ESM data evaluation. This will enable the use of labelled satellite data for a more systematic evaluation of clouds in climate models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源