论文标题
使用3D激光雷达传感器在BIM生成图上的语义定位
Semantic localization on BIM-generated maps using a 3D LiDAR sensor
论文作者
论文摘要
传统的基于传感器的本地化依赖于高精度地图,这些地图通常是使用涉及高劳动力和计算成本的专业映射技术构建的。在建筑,工程和建筑行业中,可以使用建筑信息模型(BIM),并且可以提供有关环境的信息描述。本文探讨了考虑到几何和语义属性的BIM生成图中,将移动3D激光雷达传感器定位的有效方法。首先,使用类别和位置将原始BIM元素转换为语义增强点云图。之后,根据迭代最接近的点登记,执行了粗到最新的语义定位,以使激光指向地图。实验结果表明,语义定位只能使用一个激光雷达传感器成功跟踪姿势,从而证明了所提出的无映射定位框架的可行性。结果还表明,使用语义信息可以帮助减少BIM生成的地图上的本地化错误。
Conventional sensor-based localization relies on high-precision maps, which are generally built using specialized mapping techniques involving high labor and computational costs. In the architectural, engineering and construction industry, Building Information Models (BIM) are available and can provide informative descriptions of environments. This paper explores an effective way to localize a mobile 3D LiDAR sensor on BIM-generated maps considering both geometric and semantic properties. First, original BIM elements are converted to semantically augmented point cloud maps using categories and locations. After that, a coarse-to-fine semantic localization is performed to align laser points to the map based on iterative closest point registration. The experimental results show that the semantic localization can track the pose successfully with only one LiDAR sensor, thus demonstrating the feasibility of the proposed mapping-free localization framework. The results also show that using semantic information can help reduce localization errors on BIM-generated maps.