论文标题

WeatherBench概率:用于概率中等天气预测的基准数据集以及深度学习基线模型

WeatherBench Probability: A benchmark dataset for probabilistic medium-range weather forecasting along with deep learning baseline models

论文作者

Garg, Sagar, Rasp, Stephan, Thuerey, Nils

论文摘要

WeatherBench是一个基准数据集,用于对地球,温度和降水的中等天气预测,由预处理数据,预定义的评估指标和许多基线模型组成。 WeatherBench概率通过添加一组已建立的概率验证指标(连续排名的概率得分,分量技能比率和等级直方图)和使用ECWMF IF SENEMEMENEMEMENBLECHEMEMENBAST预测来扩展到概率预测。此外,我们测试了三种不同的概率机器学习方法 - 蒙特卡洛辍学,参数预测和分类预测,其中概率分布被离散化。我们发现普通的蒙特卡洛辍学会严重低估了不确定性。参数模型和分类模型都产生了相似质量的相当可靠的预测。参数模型的自由度较少,而分类模型在预测非高斯分布方面更为灵活。这些模型都无法匹配操作IFS模型的技能。我们希望这种基准能够使其他研究人员能够评估他们的概率方法。

WeatherBench is a benchmark dataset for medium-range weather forecasting of geopotential, temperature and precipitation, consisting of preprocessed data, predefined evaluation metrics and a number of baseline models. WeatherBench Probability extends this to probabilistic forecasting by adding a set of established probabilistic verification metrics (continuous ranked probability score, spread-skill ratio and rank histograms) and a state-of-the-art operational baseline using the ECWMF IFS ensemble forecast. In addition, we test three different probabilistic machine learning methods -- Monte Carlo dropout, parametric prediction and categorical prediction, in which the probability distribution is discretized. We find that plain Monte Carlo dropout severely underestimates uncertainty. The parametric and categorical models both produce fairly reliable forecasts of similar quality. The parametric models have fewer degrees of freedom while the categorical model is more flexible when it comes to predicting non-Gaussian distributions. None of the models are able to match the skill of the operational IFS model. We hope that this benchmark will enable other researchers to evaluate their probabilistic approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源