论文标题

memseg:一种半监督的方法,用于使用差异和共同点进行图像表面缺陷检测

MemSeg: A semi-supervised method for image surface defect detection using differences and commonalities

论文作者

Yang, Minghui, Wu, Peng, Liu, Jing, Feng, Hui

论文摘要

在半监督框架下,我们提出了一个基于端到的内存分割网络(MEMSEG),以检测工业产品的表面缺陷。从差异和共同点的角度来看,考虑到同一生产线中产品的较小阶层差异,Memseg引入了人为模拟的异常样本和内存样本,以帮助学习网络。在训练阶段,MEMSEG明确了解正常和模拟异常图像之间的潜在差异以获得稳健的分类超平面。同时,受到人类记忆机制的启发,memseg使用存储池来存储普通样本的一般模式。通过比较记忆池中输入样本和记忆样本之间的相似性和差异,以有效地猜测异常区域;在推论阶段,MEMSEG直接以端到端方式直接确定输入图像的异常区域。通过实验验证,MEMSEG分别在MVTEC AD数据集上实现了最新的(SOTA)性能,其AUC得分分别为99.56%和98.84%,分别在图像级和像素级别上。此外,MEMSEG在推理速度方面还具有重要的优势,从端到端和直接的网络结构中受益,这更好地满足了工业场景中的实时需求。

Under the semi-supervised framework, we propose an end-to-end memory-based segmentation network (MemSeg) to detect surface defects on industrial products. Considering the small intra-class variance of products in the same production line, from the perspective of differences and commonalities, MemSeg introduces artificially simulated abnormal samples and memory samples to assist the learning of the network. In the training phase, MemSeg explicitly learns the potential differences between normal and simulated abnormal images to obtain a robust classification hyperplane. At the same time, inspired by the mechanism of human memory, MemSeg uses a memory pool to store the general patterns of normal samples. By comparing the similarities and differences between input samples and memory samples in the memory pool to give effective guesses about abnormal regions; In the inference phase, MemSeg directly determines the abnormal regions of the input image in an end-to-end manner. Through experimental validation, MemSeg achieves the state-of-the-art (SOTA) performance on MVTec AD datasets with AUC scores of 99.56% and 98.84% at the image-level and pixel-level, respectively. In addition, MemSeg also has a significant advantage in inference speed benefiting from the end-to-end and straightforward network structure, which better meets the real-time requirement in industrial scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源