论文标题

在延迟零的微分方程的溶液歧管上

On the solution manifold of a differential equation with a delay which has a zero

论文作者

Walther, Hans-Otto

论文摘要

对于具有状态依赖性延迟的微分方程,我们表明codimnsion 1在空间中的$ c^1([ - r,0],\ mathbb {r})$几乎是超平面上的图形,这意味着$ x_f $对超平面差异。对于被认为先前的结果的情况,仅提供2个几乎图形的覆盖率。

For a differential equation with a state-dependent delay we show that the associated solution manifold $X_f$ of codimnsion 1 in the space $C^1([-r,0],\mathbb {R})$ is an almost graph over a hyperplane, which implies that $X_f$ is diffeomorphic to the hyperplane. For the case considered previous results only provide a covering by 2 almost graphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源