论文标题
吉塔夫旋转液体候选者Cu $ _2 $ IRO $ _3 $:X射线,拉曼,磁敏感性,电阻率和第一原理分析
Pressure tuning of structure, magnetic frustration and carrier conduction in Kitaev spin liquid candidate Cu$_2$IrO$_3$: X-ray, Raman, magnetic susceptibility, resistivity and first-principles analysis
论文作者
论文摘要
分层的蜂窝状晶格irate cu $ _2 $ iro $ _3 $是Kitaev量子旋转液体的最接近的实现,这主要是由于增强的层间间隔和几乎理想的蜂窝状晶格。我们报告了压力引起的结构演变,cu $ _2 $ iro $ _3 $ ty Powder X射线衍射(PXRD)最多可达$ \ sim $ 17 GPA和拉曼散射测量值,最高$ \ sim $ 25 gpa。结构相变(单斜$ C2/C \:\ Rightarrow $ Triclinic $ p \ bar {1} $)在宽阔的混合相压范围内观察到($ \ sim $ 4至15 GPA)。三斜阶段由带有IR-IR二聚体形成的严重扭曲的蜂窝状晶格和塌陷的层间分离组成。在低压单斜相相的稳定性范围内,结构进化可维持高达4 GPA的基塔耶ev构型。观察到的DC易感性增强的磁性挫败感支持了这一点,而没有出现任何磁性顺序和增强的动态拉曼敏感性。在温度范围内,高压电阻测量值1.4---300 K显示出弹性的非金属$ r $($ t $)行为,在高压阶段的电阻率大大降低。 Mott 3D变量范围的传导传导大量降低了特征能量$ T_0 $,这表明高压阶段位于局部 - 互换交叉的边界。使用第一原理密度的功能理论(DFT)计算,我们发现在环境压力$ \ rm cu_2iro_3 $中存在单纤维胶质$ p2_1/c $相位,在能量上低于$ c2/c $相位(两种结构都与实验XRD模式保持一致)。 DFT揭示了与实验观察到的过渡压力一致的7 GPA(涉及IR-IR债券的二聚化)在7 GPA(涉及IR-IR键的二聚化)的结构过渡到$ P \ bar {1} $结构。
The layered honeycomb lattice iridate Cu$_2$IrO$_3$ is the closest realization of the Kitaev quantum spin liquid, primarily due to the enhanced interlayer separation and nearly ideal honeycomb lattice. We report pressure-induced structural evolution of Cu$_2$IrO$_3$ by powder x-ray diffraction (PXRD) up to $\sim$17 GPa and Raman scattering measurements up to $\sim$25 GPa. A structural phase transition (monoclinic $C2/c \: \rightarrow$ triclinic $P\bar{1}$) is observed with a broad mixed phase pressure range ($\sim$4 to 15 GPa). The triclinic phase consists of heavily distorted honeycomb lattice with Ir-Ir dimer formation and a collapsed interlayer separation. In the stability range of the low-pressure monoclinic phase, structural evolution maintains the Kitaev configuration up to 4 GPa. This is supported by the observed enhanced magnetic frustration in dc susceptibility without emergence of any magnetic ordering and an enhanced dynamic Raman susceptibility. High-pressure resistance measurements up to 25 GPa in the temperature range 1.4--300 K show resilient non-metallic $R$($T$) behaviour with significantly reduced resistivity in the high-pressure phase. The Mott 3D variable-range-hopping conduction with much reduced characteristic energy scale $T_0$ suggests that the high-pressure phase is at the boundary of localized-itinerant crossover. Using first-principles density functional theoretical (DFT) calculations, we find that at ambient pressure $\rm Cu_2IrO_3$ exists in monoclinic $P2_1/c$ phase which is energetically lower than $C2/c$ phase (both the structures are consistent with experimental XRD pattern). DFT reveals structural transition from $P2_1/c$ to $P\bar{1}$ structure at 7 GPa (involving dimerization of Ir-Ir bonds) in agreement with experimentally observed transition pressure.