论文标题

情绪控制的通用谈话面

Emotion-Controllable Generalized Talking Face Generation

论文作者

Sinha, Sanjana, Biswas, Sandika, Yadav, Ravindra, Bhowmick, Brojeshwar

论文摘要

尽管近年来取得了重大进展,但基于AI的会说话的面部生成方法很少试图引起自然情绪。此外,该方法的范围主要限于训练数据集的特征,因此它们未能推广到任意看不见的面孔。在本文中,我们提出了一种单发的面部几何感知情感说话的面部生成方法,可以推广到任意面孔。我们提出了一个使用语音内容特征的图形卷积神经网络,以及独立的情感输入来产生情绪和语音引起的运动在面部几何学意识到的地标表示上。该表示形式在我们的光流引导纹理生成网络中进一步用于产生纹理。我们提出了一个两分支的纹理生成网络,其运动和纹理分支旨在独立考虑运动和纹理内容。与以前的情感说话的面部方法相比,我们的方法可以通过仅用单个中性情感中目标身份的图像进行微调来适应野外捕获的任意面孔。

Despite the significant progress in recent years, very few of the AI-based talking face generation methods attempt to render natural emotions. Moreover, the scope of the methods is majorly limited to the characteristics of the training dataset, hence they fail to generalize to arbitrary unseen faces. In this paper, we propose a one-shot facial geometry-aware emotional talking face generation method that can generalize to arbitrary faces. We propose a graph convolutional neural network that uses speech content feature, along with an independent emotion input to generate emotion and speech-induced motion on facial geometry-aware landmark representation. This representation is further used in our optical flow-guided texture generation network for producing the texture. We propose a two-branch texture generation network, with motion and texture branches designed to consider the motion and texture content independently. Compared to the previous emotion talking face methods, our method can adapt to arbitrary faces captured in-the-wild by fine-tuning with only a single image of the target identity in neutral emotion.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源