论文标题

使用多模式深度生存分析预测阿尔茨海默氏症痴呆症的转换时间

Predicting Time-to-conversion for Dementia of Alzheimer's Type using Multi-modal Deep Survival Analysis

论文作者

Mirabnahrazam, Ghazal, Ma, Da, Beaulac, Cédric, Lee, Sieun, Popuri, Karteek, Lee, Hyunwoo, Cao, Jiguo, Galvin, James E, Wang, Lei, Beg, Mirza Faisal, Initiative, the Alzheimer's Disease Neuroimaging

论文摘要

阿尔茨海默氏症类型(DAT)的痴呆症是一种受众多因素影响的复杂疾病,但目前尚不清楚每个因素如何促进疾病进展。对这些因素的深入检查可能会准确地估计各种疾病阶段患者的DAT时间。我们在阿尔茨海默氏病神经影像学计划(ADNI)数据库中使用了401名具有MRI,遗传和CDC(认知测试,人口统计学和CSF)数据模式的受试者。我们使用了基于深度学习的生存分析模型,该模型扩展了经典的Cox回归模型来预测DAT的转换时间。我们的发现表明,遗传特征对生存分析的贡献最少,而CDC特征贡献最大。将MRI和遗传特征结合起来,仅使用任何一种模态就可以改善生存预测,但是将CDC添加到只能使用的任何功能组合以及仅使用CDC功能的组合中。因此,我们的研究表明,使用当前的临床程序(包括收集认知测试结果)可以超过使用昂贵的遗传或CSF数据产生的生存分析结果。

Dementia of Alzheimer's Type (DAT) is a complex disorder influenced by numerous factors, but it is unclear how each factor contributes to disease progression. An in-depth examination of these factors may yield an accurate estimate of time-to-conversion to DAT for patients at various disease stages. We used 401 subjects with 63 features from MRI, genetic, and CDC (Cognitive tests, Demographic, and CSF) data modalities in the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. We used a deep learning-based survival analysis model that extends the classic Cox regression model to predict time-to-conversion to DAT. Our findings showed that genetic features contributed the least to survival analysis, while CDC features contributed the most. Combining MRI and genetic features improved survival prediction over using either modality alone, but adding CDC to any combination of features only worked as well as using only CDC features. Consequently, our study demonstrated that using the current clinical procedure, which includes gathering cognitive test results, can outperform survival analysis results produced using costly genetic or CSF data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源