论文标题

分数安德森模型

A fractional Anderson model

论文作者

Molina, Mario I.

论文摘要

我们检查了一维紧密结合的安德森模型中疾​​病与部分之间的相互作用。在没有疾病的情况下,我们观察到,两个最低的能量特征值从频段的底部脱离了自己,因为分级性$ s $的减少,在$ s = 0 $下完全退化,共同的能量等于半带宽,$ v $。其余的$ N-2 $状态完全退化,形成了一个平坦的频带,其能量等于带宽,$ 2V $。因此,在基态和频带之间形成了差距。在存在障碍和固定障碍宽度的情况下,$ s $的减少会降低点光谱的宽度,而对于固定的$ s $,疾病的增加会增加光谱的宽度。对于所有疾病宽度,平均参与率均以$ S $降低,呈现出本地化的趋势。但是,平均均方根位移(MSD)显示出低$ s $值的驼峰,表明存在扩展状态的存在,这与远程跳跃模型中发现的一致。

We examine the interplay between disorder and fractionality in a one-dimensional tight-binding Anderson model. In the absence of disorder, we observe that the two lowest energy eigenvalues detach themselves from the bottom of the band, as fractionality $s$ is decreased, becoming completely degenerate at $s=0$, with a common energy equal to a half bandwidth, $V$. The remaining $N-2$ states become completely degenerate forming a flat band with energy equal to a bandwidth, $2V$. Thus, a gap is formed between the ground state and the band. In the presence of disorder and for a fixed disorder width, a decrease in $s$ reduces the width of the point spectrum while for a fixed $s$, an increase in disorder increases the width of the spectrum. For all disorder widths, the average participation ratio decreases with $s$ showing a tendency towards localization. However, the average mean square displacement (MSD) shows a hump at low $s$ values, signaling the presence of a population of extended states, in agreement with what is found in long-range hopping models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源