论文标题

一种多面部性的成本最低影响影响社交网络中最大化的方法

A Polyhedral Approach to Least Cost Influence Maximization in Social Networks

论文作者

Chen, Cheng-Lung, Pasiliao, Eduardo, Boginski, Vladimir

论文摘要

成本最低的影响最大化问题旨在确定最初给有影响力的散布者在社交网络上给出的部分(例如,货币)激励措施的最低成本,以便这些早期采用者对邻居施加影响,并迅速影响传播以在级联过程结束时达到所需的渗透率。我们首先对描述影响传播的子结构进行多面体分析,假设影响权重不等,线性和可分离。提出了基于此子结构中包含的混合0-1背包集的两类定义不平等。我们使用最小影响子集的概念来表征另一种有效和方面定义不平等的指数类别。我们表明,这些不平等可以在多项式时间中分离。此外,在简单的循环图上提出了多项式时间动态编程递归,以解决此问题。对于任意图,我们提出了一类新的有效不平等指数类别,该类别主导了循环消除约束和有效的分离算法。提出了针对特殊情况的紧凑型凸面描述。我们通过计算实验中的延迟切割产生算法来说明这些不平等的有效性。

The least cost influence maximization problem aims to determine minimum cost of partial (e.g., monetary) incentives initially given to the influential spreaders on a social network, so that these early adopters exert influence toward their neighbors and prompt influence propagation to reach a desired penetration rate by the end of cascading processes. We first conduct polyhedral analysis on a substructure that describes influence propagation assuming influence weights are unequal, linear and additively separable. Two classes of facet-defining inequalities based on a mixed 0-1 knapsack set contained in this substructure are proposed. We characterize another exponential class of valid and facet-defining inequalities utilizing the concept of minimum influencing subset. We show that these inequalities can be separated in polynomial time efficiently. Furthermore, a polynomial-time dynamic programming recursion is presented to solve this problem on a simple cycle graph. For arbitrary graphs, we propose a new exponential class of valid inequalities that dominates the cycle elimination constraints and an efficient separation algorithm for them. A compact convex hull description for a special case is presented. We illustrate the effectiveness of these inequalities via a delayed cut generation algorithm in the computational experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源