论文标题

迈向异常ISP流量预测的集合回归模型

Towards an Ensemble Regressor Model for Anomalous ISP Traffic Prediction

论文作者

Saha, Sajal, Haque, Anwar, Sidebottom, Greg

论文摘要

网络流量行为的预测对于有效管理现代电信网络是重要的。但是,使用管理经验和市场分析数据预测网络流量的直观方法是不足以实现有效的预测框架的。结果,已经研究了许多不同的数学模型,以捕获网络流量的一般趋势并相应地预测。但是,在分析现实世界中的异常流量之前,尚未对各种回归模型及其集合进行全面的性能分析。在本文中,分析了几种回归模型,例如额外的梯度提升(XGBOOST),轻梯度提升机(LightGBM),随机梯度下降(SGD),梯度增强回归器(GBR)和Catboost Regress,以预测实际的交通,并与现实的交通相处,并在现实中表现出了现实的交通量的重要性。同样,我们在单个预测模型上展示了集合回归模型的表现。我们比较了基于长度6、9、12、15和18的五个不同特征集的不同回归模型的性能。我们的整体回归模型在使用九个异常调整的输入的实际和预测流量之间达到了最小平均差距为5.04%。通常,我们的实验结果表明,数据中的离群值可以显着影响预测的质量。因此,异常检测和缓解措施有助于回归模型学习一般趋势并做出更好的预测。

Prediction of network traffic behavior is significant for the effective management of modern telecommunication networks. However, the intuitive approach of predicting network traffic using administrative experience and market analysis data is inadequate for an efficient forecast framework. As a result, many different mathematical models have been studied to capture the general trend of the network traffic and predict accordingly. But the comprehensive performance analysis of varying regression models and their ensemble has not been studied before for analyzing real-world anomalous traffic. In this paper, several regression models such as Extra Gradient Boost (XGBoost), Light Gradient Boosting Machine (LightGBM), Stochastic Gradient Descent (SGD), Gradient Boosting Regressor (GBR), and CatBoost Regressor were analyzed to predict real traffic without and with outliers and show the significance of outlier detection in real-world traffic prediction. Also, we showed the outperformance of the ensemble regression model over the individual prediction model. We compared the performance of different regression models based on five different feature sets of lengths 6, 9, 12, 15, and 18. Our ensemble regression model achieved the minimum average gap of 5.04% between actual and predicted traffic with nine outlier-adjusted inputs. In general, our experimental results indicate that the outliers in the data can significantly impact the quality of the prediction. Thus, outlier detection and mitigation assist the regression model in learning the general trend and making better predictions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源