论文标题
神经语言任务:哪些NLP任务是fMRI大脑活动的最终预测?
Neural Language Taskonomy: Which NLP Tasks are the most Predictive of fMRI Brain Activity?
论文作者
论文摘要
已经发现,几种受欢迎的基于变压器的语言模型成功地用于文本驱动的大脑编码。但是,现有的文献仅利用预估计的文本变压器模型,并且没有探索特定于任务的学习变压器表示的功效。在这项工作中,我们探讨了从为十个流行的自然语言处理任务(两个句法和八个语义)学到的表示的转移学习,以预测来自两个不同数据集的大脑反应:Pereira(pereira(受试者阅读段落中的句子)和叙事(受试者(受试者听取了口语故事))。基于任务特征的编码模型用于预测整个大脑中不同区域的活动。 Coreference分辨率,NER和浅层语法解析的特征解释了阅读活动的更大差异。另一方面,对于聆听活动,诸如释义,摘要和自然语言推理之类的任务显示出更好的编码性能。所有10个任务表示的实验提供了以下认知见解:(i)左半球的语言具有较高的预测性大脑活动与语言右半球具有较高的预测性脑活动,(ii)后内侧皮层,临时骨枕骨 - 临时额 - 额叶额叶的相关性较高的相关性与早期听觉和听觉效果(III II II II II II II III)的相关性较高阅读和听力刺激措施。
Several popular Transformer based language models have been found to be successful for text-driven brain encoding. However, existing literature leverages only pretrained text Transformer models and has not explored the efficacy of task-specific learned Transformer representations. In this work, we explore transfer learning from representations learned for ten popular natural language processing tasks (two syntactic and eight semantic) for predicting brain responses from two diverse datasets: Pereira (subjects reading sentences from paragraphs) and Narratives (subjects listening to the spoken stories). Encoding models based on task features are used to predict activity in different regions across the whole brain. Features from coreference resolution, NER, and shallow syntax parsing explain greater variance for the reading activity. On the other hand, for the listening activity, tasks such as paraphrase generation, summarization, and natural language inference show better encoding performance. Experiments across all 10 task representations provide the following cognitive insights: (i) language left hemisphere has higher predictive brain activity versus language right hemisphere, (ii) posterior medial cortex, temporo-parieto-occipital junction, dorsal frontal lobe have higher correlation versus early auditory and auditory association cortex, (iii) syntactic and semantic tasks display a good predictive performance across brain regions for reading and listening stimuli resp.