论文标题

一项研究稀土薰衣草相,用于氢的磁联液化

A study on rare-earth Laves phases for magnetocaloric liquefaction of hydrogen

论文作者

Liu, Wei, Bykov, Eduard, Taskaev, Sergey, Bogush, Mikhail, Khovaylo, Vladimir, Fortunato, Nuno, Aubert, Alex, Zhang, Hongbin, Gottschall, Tino, Wosniza, Jochen, Scheibel, Franziska, Skokov, Konstantin, Gutfleisch, Oliver

论文摘要

我们目睹了对一个由可再生能源提供支持的社会,以实现不断敏锐的气候目标。作为能源载体的氢将在建立气候中性社会中发挥关键作用。尽管液体氢对于氢储存和运输至关重要,但液化氢的代价高昂,基于焦耳thomas效应的常规方法。作为一种可能更有效的新兴技术,磁电液化是一种“改变游戏规则”。在这项工作中,我们研究了基于稀土的薰衣草阶段$ {\ rm rm} al_2 $和$ {\ rm rm r} ni_2 $用于磁源氢液化。我们已经注意到,未解决的特征是,二阶磁电材料在氢沸点附近变成“巨型”。此特征表明在磁联效应的三个重要数量中,直到氢的沸点很强:最大磁熵变化$ΔS_{m}^{max} $,最大的绝热温度变化$Δt_t_{ad ad}^{max}^{max}^{max} $,以及curie温度$ t_c $ t_c $。通过全面的文献综述,我们将稀有金属间系列系列的相关性解释为两个趋势:(1)$ΔS_{m}^{max} $增加,随着$ t_c $的减少而增加; (2)$Δt_{ad}^{max} $随着$ t_c $的降低,但在低温温度下升高。此外,我们已经开发了一种均值场方法来理论上描述这两种趋势。 $δS_{M}^{Max} $和$ΔT_{AD}^{Max} $对$ T_C $在这项工作中揭示的依赖性有助于我们快速预期基于稀有的化合物的磁环质性能,指导材料设计,指导材料设计并加速了磁取代物料对Hydrogenaroric材料的发现。

We are witnessing a great transition towards a society powered by renewable energies to meet the ever-stringent climate target. Hydrogen, as an energy carrier, will play a key role in building a climate-neutral society. Although liquid hydrogen is essential for hydrogen storage and transportation, liquefying hydrogen is costly with the conventional methods based on Joule-Thomas effect. As an emerging technology which is potentially more efficient, magnetocaloric hydrogen liquefaction is a "game-changer". In this work, we have investigated the rare-earth-based Laves phases ${\rm R}Al_2$ and ${\rm R}Ni_2$ for magnetocaloric hydrogen liquefaction. We have noticed an unaddressed feature that the magnetocaloric effect of second-order magnetocaloric materials can become "giant" near the hydrogen boiling point. This feature indicates strong correlations, down to the boiling point of hydrogen, among the three important quantities of the magnetocaloric effect: the maximum magnetic entropy change $ΔS_{m}^{max}$, the maximum adiabatic temperature change $ΔT_{ad}^{max}$, and the Curie temperature $T_C$. Via a comprehensive literature review, we interpret the correlations for a rare-earth intermetallic series as two trends: (1) $ΔS_{m}^{max}$ increases with decreasing $T_C$; (2) $ΔT_{ad}^{max}$ decreases near room temperature with decreasing $T_C$ but increases at cryogenic temperatures. Moreover, we have developed a mean-field approach to describe these two trends theoretically. The dependence of $ΔS_{m}^{max}$ and $ΔT_{ad}^{max}$ on $T_C$ revealed in this work helps us quickly anticipate the magnetocaloric performance of rare-earth-based compounds, guiding material design and accelerating the discoveries of magnetocaloric materials for hydrogen liquefaction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源