论文标题

MRI实时胎儿脑分割的深度学习框架

Deep Learning Framework for Real-time Fetal Brain Segmentation in MRI

论文作者

Faghihpirayesh, Razieh, Karimi, Davood, Erdogmus, Deniz, Gholipour, Ali

论文摘要

胎儿脑分割是切片级运动校正和胎儿MRI中切片到体积重建的重要第一步。需要快速准确地分割胎儿MRI上的胎儿大脑,以实现切片重新获得和转向的实时胎儿姿势估计和运动跟踪。为了满足这种关键的未满足需求,在这项工作中,我们分析了各种深神经网络模型的速度准确性性能,并设计了一个象征性的小卷积神经网络,该网络将空间细节与高分辨率相结合,并在较低分辨率下提取的上下文特征。我们使用了具有跳过连接的多个分支来保持高精度,同时将卷积和合并操作的平行组合作为输入倒数采样模块,以进一步缩短推理时间。我们培训了我们的模型以及八个具有手动标记的胎儿脑MRI切片的替代性,最先进的网络,并在两组正常且具有挑战性的测试用例上进行了测试。实验结果表明,在所有比较的实时分割方法中,我们的网络达到了最高的准确性和最低的推理时间。在正常和具有挑战性的测试集上,我们的平均骰子得分分别达到97.99 \%和84.04 \%,在NVIDIA GEFORCE RTX 2080 TI上的推理时间为3.36毫秒。代码,数据和受过训练的模型可在https://github.com/bchimagine/real_time_fetal_brain_segnementation上找到。

Fetal brain segmentation is an important first step for slice-level motion correction and slice-to-volume reconstruction in fetal MRI. Fast and accurate segmentation of the fetal brain on fetal MRI is required to achieve real-time fetal head pose estimation and motion tracking for slice re-acquisition and steering. To address this critical unmet need, in this work we analyzed the speed-accuracy performance of a variety of deep neural network models, and devised a symbolically small convolutional neural network that combines spatial details at high resolution with context features extracted at lower resolutions. We used multiple branches with skip connections to maintain high accuracy while devising a parallel combination of convolution and pooling operations as an input downsampling module to further reduce inference time. We trained our model as well as eight alternative, state-of-the-art networks with manually-labeled fetal brain MRI slices and tested on two sets of normal and challenging test cases. Experimental results show that our network achieved the highest accuracy and lowest inference time among all of the compared state-of-the-art real-time segmentation methods. We achieved average Dice scores of 97.99\% and 84.04\% on the normal and challenging test sets, respectively, with an inference time of 3.36 milliseconds per image on an NVIDIA GeForce RTX 2080 Ti. Code, data, and the trained models are available at https://github.com/bchimagine/real_time_fetal_brain_segmentation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源