论文标题
与二进制黑洞合并重力波中质量比逆转的签名
Signatures of mass ratio reversal in gravitational waves from merging binary black holes
论文作者
论文摘要
合并二进制黑洞的旋转提供了有关其形成史的见解。最近有人认为,在两个巨星的孤立二进制演化中,长子黑洞正在缓慢旋转,而如果二进制足够紧密,则第二胎黑洞的祖细胞可以潮汐旋转。因此,天真的人可能会期望仅在合并二进制物中的黑洞较少的黑洞表现出不可忽略的自旋。但是,如果二进制的质量比“逆转”(通常在第一个传质发作中),则潮汐旋转的第二胎可能会成为更大的黑洞。我们使用大量的560种种群合成模型研究了这种质量比率逆转(MRR)二进制黑洞合并的特性。我们发现,较大的黑洞是在$ \ gtrsim 70 \%$ 70 \%$的黑洞中形成的第二个二进制黑洞,在我们考虑的大多数模型变体中,可以观察到的大多数模型变化,典型的总质量$ \ gtrsim 20 $ \ gtrsim 20 $ m $ m $ m $ m $ _ {\ odot} $和质量$ q = m_2 / m_2 / m_2 / m_2 / m_1 $ _1 $(mim_1 $ _1 $ _1 $ _1 \ M)。这些系统的形成历史通常仅涉及稳定的传质发作。第二出生的黑洞具有不可忽略的旋转($χ> 0.05 $),最高为$ 25 \%$ $ $,其中包括$ 0 \%$ - $ 80 \%$($ 20 \%$ $ 20 \%$ -20 \% - $ 100 \%\%\%\%\%),在我们的模型中有很多(在我们的模型中)。我们在几个观察到的重力波事件以及观察到的质量比 - 有效自旋相关性的背景下讨论了我们的模型。
The spins of merging binary black holes offer insights into their formation history. Recently it has been argued that in isolated binary evolution of two massive stars the firstborn black hole is slowly rotating, whilst the progenitor of the second-born black hole can be tidally spun up if the binary is tight enough. Naively, one might therefore expect that only the less massive black hole in merging binaries exhibits non-negligible spin. However, if the mass ratio of the binary is "reversed" (typically during the first mass transfer episode), it is possible for the tidally spun up second-born to become the more massive black hole. We study the properties of such mass-ratio reversed (MRR) binary black hole mergers using a large set of 560 population synthesis models. We find that the more massive black hole is formed second in $\gtrsim 70\%$ of binary black holes observable by LIGO, Virgo, and KAGRA for most model variations we consider, with typical total masses $\gtrsim 20$ M$_{\odot}$ and mass ratios $q = m_2 / m_1 \sim 0.7$ (where $m_1 > m_2$). The formation history of these systems typically involves only stable mass transfer episodes. The second-born black hole has non-negligible spin ($χ> 0.05$) in up to $25\%$ of binary black holes, with among those the more (less) massive black hole spinning in $0\%$--$80\%$ ($20\%$--$100\%$) of cases, varying greatly in our models. We discuss our models in the context of several observed gravitational-wave events and the observed mass ratio - effective spin correlation.