论文标题

学习动态的两人步行跨过垫脚石

Learning Dynamic Bipedal Walking Across Stepping Stones

论文作者

Duan, Helei, Malik, Ashish, Gadde, Mohitvishnu S., Dao, Jeremy, Fern, Alan, Hurst, Jonathan

论文摘要

在这项工作中,当脚步限制在踏上石头上时,我们提出了一种用于3D动态两足步行的学习方法。尽管最近的工作已经在这个问题上显示出进展,但现实世界的演示仅限于相对简单的开环,无感知的场景。我们的主要贡献是一种更高级的学习方法,该方法可以使用Cassie机器人进行现实世界中的演示,并在中等困难的踏脚石模式上进行闭环动态行走。我们的方法首先在模拟中使用增强学习(RL)来训练一个控制器,该控制器将脚步命令映射到无参考运动信息的情况下。然后,我们学习了该控制器功能的模型,鉴于机器人当前的动态状态,可以预测可行的脚步。然后将最终的控制器和模型与实时架空相机系统集成,用于检测垫脚石位置。为了进行评估,我们开发了一组基准的垫脚石图案,用于在模拟和现实世界中测试性能。总体而言,我们证明了SIM到实现的学习对于在踏上石头上实现动态运动非常有希望。我们还确定挑战仍在激发重要的未来研究方向。

In this work, we propose a learning approach for 3D dynamic bipedal walking when footsteps are constrained to stepping stones. While recent work has shown progress on this problem, real-world demonstrations have been limited to relatively simple open-loop, perception-free scenarios. Our main contribution is a more advanced learning approach that enables real-world demonstrations, using the Cassie robot, of closed-loop dynamic walking over moderately difficult stepping-stone patterns. Our approach first uses reinforcement learning (RL) in simulation to train a controller that maps footstep commands onto joint actions without any reference motion information. We then learn a model of that controller's capabilities, which enables prediction of feasible footsteps given the robot's current dynamic state. The resulting controller and model are then integrated with a real-time overhead camera system for detecting stepping stone locations. For evaluation, we develop a benchmark set of stepping stone patterns, which are used to test performance in both simulation and the real world. Overall, we demonstrate that sim-to-real learning is extremely promising for enabling dynamic locomotion over stepping stones. We also identify challenges remaining that motivate important future research directions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源