论文标题
Hardy操作员和渐近Muntz-Szasz定理的概括
A generalization of Hardy's operator and an asymptotic Muntz-Szasz Theorem
论文作者
论文摘要
Hardy运算符具有所有单一功能作为特征向量。我们在L^2上研究有界的操作员,这些操作员将单一函数带到其他单一元素的倍数,指数转移。我们证明它们都使[0,s]不变的功能空间消失了。我们证明了一个渐近muntz-szasz定理,表征了一组函数,这些函数是单个单体组合的限制,其中n和2n之间的指数。
The Hardy operator has all the monomial functions as eigenvectors. We study bounded operators on L^2 that take monomial functions to multiples of other monomials, with a shifted exponent. We prove that they all leave the space of functions vanishing on [0,s] invariant. We prove an asymptotic Muntz-Szasz theorem, characterizing the set of functions that are limits of linear combinations of monomials with exponents between n and 2n.