论文标题

用于形状优化的可扩展算法,在Banach空间中具有几何约束

A Scalable Algorithm for Shape Optimization with Geometric Constraints in Banach Spaces

论文作者

Müller, Peter Marvin, Pinzon, Jose, Rung, Thomas, Siebenborn, Martin

论文摘要

这项工作开发了一种基于Lipschitz变换的PDE受限形状优化的算法。在该领域的先前工作的基础上,$ p $ laplace运营商可用于近似Lipschitz形状的下降方法。特别是,通过将它们分配给找到合适的下降方向的子问题,显示了几何约束如何算法纳入避免惩罚项的算法。特殊的重点是通过应用多机求解器的应用,将大规模平行计算机提出的方法的可伸缩性放在了。还讨论了在优化过程中必须平滑或生成形状奇异性的大变形下的网格质量。结果表明,可以通过选择适当的下降方向来实现层次完善的网格和形状优化的相互作用。在流体动力学应用中,证明了所提出的方法的性能最小化。

This work develops an algorithm for PDE-constrained shape optimization based on Lipschitz transformations. Building on previous work in this field, the $p$-Laplace operator is utilized to approximate a descent method for Lipschitz shapes. In particular, it is shown how geometric constraints are algorithmically incorporated avoiding penalty terms by assigning them to the subproblem of finding a suitable descent direction. A special focus is placed on the scalability of the proposed methods for large scale parallel computers via the application of multigrid solvers. The preservation of mesh quality under large deformations, where shape singularities have to be smoothed or generated within the optimization process, is also discussed. It is shown that the interaction of hierarchically refined grids and shape optimization can be realized by the choice of appropriate descent directions. The performance of the proposed methods is demonstrated for energy dissipation minimization in fluid dynamics applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源