论文标题

使用CT SARS-COV-2分割模型评估COVID 3D定位的可传递性

Evaluating Transferability for Covid 3D Localization Using CT SARS-CoV-2 segmentation models

论文作者

Maganaris, Constantine, Protopapadakis, Eftychios, Bakalos, Nikolaos, Doulamis, Nikolaos, Kalogeras, Dimitris, Angeli, Aikaterini

论文摘要

最近的研究表明,在CT扫描上检测射线照相模式可以产生高灵敏度和特异性,以使其对COVID-19的定位。在本文中,我们研究了深度学习模型可传递性的适当性,用于对CT图像中肺炎感染区域的语义分割。转移学习允许对检测模型进行快速初始化/重新化,鉴于没有大量培训数据。我们的工作探讨了在特定的CT数据集上使用预训练的U-NET体系结构的功效,以识别来自不同数据集的图像上的COVID-19副作用。实验结果表明,鉴定COVID-19受感染区域的分割准确性的提高。

Recent studies indicate that detecting radiographic patterns on CT scans can yield high sensitivity and specificity for Covid-19 localization. In this paper, we investigate the appropriateness of deep learning models transferability, for semantic segmentation of pneumonia-infected areas in CT images. Transfer learning allows for the fast initialization/reutilization of detection models, given that large volumes of training data are not available. Our work explores the efficacy of using pre-trained U-Net architectures, on a specific CT data set, for identifying Covid-19 side-effects over images from different datasets. Experimental results indicate improvement in the segmentation accuracy of identifying Covid-19 infected regions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源