论文标题
Bodyslam:联合摄像头定位,映射和人类运动跟踪
BodySLAM: Joint Camera Localisation, Mapping, and Human Motion Tracking
论文作者
论文摘要
由于其许多潜在的应用,从视频中估算人类运动是一个活跃的研究领域。大多数最先进的方法可以预测单个图像的人形形状和姿势估计,并且不利用视频中可用的时间信息。许多“野生”运动序列被移动的摄像机捕获,这为估计增加了混合的摄像头和人类运动的并发症。因此,我们介绍了Bodyslam,这是一种单眼大满贯系统,共同估计人体的位置,形状和姿势以及摄像机轨迹。我们还引入了一种新型的人类运动模型,以限制顺序的身体姿势并观察场景的规模。通过通过移动的单眼相机捕获的人类运动的视频序列进行的一系列实验,我们证明了Bodyslam与单独估算这些估计相比,可以改善所有人体参数和相机的估计。
Estimating human motion from video is an active research area due to its many potential applications. Most state-of-the-art methods predict human shape and posture estimates for individual images and do not leverage the temporal information available in video. Many "in the wild" sequences of human motion are captured by a moving camera, which adds the complication of conflated camera and human motion to the estimation. We therefore present BodySLAM, a monocular SLAM system that jointly estimates the position, shape, and posture of human bodies, as well as the camera trajectory. We also introduce a novel human motion model to constrain sequential body postures and observe the scale of the scene. Through a series of experiments on video sequences of human motion captured by a moving monocular camera, we demonstrate that BodySLAM improves estimates of all human body parameters and camera poses when compared to estimating these separately.