论文标题
MR-Stat的加速策略:在3分钟内在台式机上实现高分辨率重建
Acceleration Strategies for MR-STAT: Achieving High-Resolution Reconstructions on a Desktop PC within 3 minutes
论文作者
论文摘要
MR-STAT是一种新兴的定量磁共振成像技术,旨在从单个短扫描中获得多参数组织参数图。它描述了空间域组织参数与使用全面的,体积的正向模型之间测量的信号之间的关系。 MR-STAT重建解决了一个大规模的非线性问题,因此在计算上非常具有挑战性。在先前的工作中,使用笛卡尔读数数据的MR-STAT重建是通过用稀疏的,带块的近似Hessian矩阵来加速的,并且可以在数十分钟的高性能CPU群集上进行。在当前的工作中,我们提出了一种加速的笛卡尔MR-Stat算法,其中包括两种不同的策略:首先,神经网络被培训为快速替代的培训,不仅在全职域中学习磁化信号,而且还在压缩的Lowrank域中。其次,基于替代模型,笛卡尔MR-STAT问题被重新构造,并通过乘数的交替方向方法将其分为较小的子问题。所提出的方法大大减少了运行时和内存的计算要求。与以前的稀疏黑森方法相比,使用所提出的算法显示了模拟和体内平衡的MR-STAT实验显示出相似的重建结果,并且重建时间至少缩短了40倍。合并敏感性编码和正则化项是简单的,并且可以使重建时间的增加可以提高图像质量。拟议的算法可以在台式PC上3分钟内重建平衡和梯度折叠的体内数据,从而促进MR-STAT在临床环境中的翻译。
MR-STAT is an emerging quantitative magnetic resonance imaging technique which aims at obtaining multi-parametric tissue parameter maps from single short scans. It describes the relationship between the spatial-domain tissue parameters and the time-domain measured signal by using a comprehensive, volumetric forward model. The MR-STAT reconstruction solves a large-scale nonlinear problem, thus is very computationally challenging. In previous work, MR-STAT reconstruction using Cartesian readout data was accelerated by approximating the Hessian matrix with sparse, banded blocks, and can be done on high performance CPU clusters with tens of minutes. In the current work, we propose an accelerated Cartesian MR-STAT algorithm incorporating two different strategies: firstly, a neural network is trained as a fast surrogate to learn the magnetization signal not only in the full time-domain but also in the compressed lowrank domain; secondly, based on the surrogate model, the Cartesian MR-STAT problem is re-formulated and split into smaller sub-problems by the alternating direction method of multipliers. The proposed method substantially reduces the computational requirements for runtime and memory. Simulated and in-vivo balanced MR-STAT experiments show similar reconstruction results using the proposed algorithm compared to the previous sparse Hessian method, and the reconstruction times are at least 40 times shorter. Incorporating sensitivity encoding and regularization terms is straightforward, and allows for better image quality with a negligible increase in reconstruction time. The proposed algorithm could reconstruct both balanced and gradient-spoiled in-vivo data within 3 minutes on a desktop PC, and could thereby facilitate the translation of MR-STAT in clinical settings.