论文标题

草图(弱)君主制谓词的近似性

Sketching Approximability of (Weak) Monarchy Predicates

论文作者

Chou, Chi-Ning, Golovnev, Alexander, Shahrasbi, Amirbehshad, Sudan, Madhu, Velusamy, Santhoshini

论文摘要

我们分析了布尔域上约束满意度问题的草图近似性,其中约束是平衡的线性阈值函数。特别是,我们探讨了类似君主制功能的近似性,其中该功能的价值取决于第一个变量(总统)的投票的加权组合以及所有其余变量的投票之和。此功能的纯版本是,只有当所有剩余变量同意时,总统才能否决。对于每个$ k \ geq 5 $,我们都会显示,基础谓词是$ k $变量上的纯君主制函数的CSP没有$ o(\ sqrt {n})$ space的非平凡素描近似算法。我们还显示了无限的许多较弱的君主制功能,使用这些约束的CSP在$ O(\ log(n))$ Space Skupting Algorithm上不可吻合。此外,我们给出了素描近似不对称布尔CSP的第一个示例。我们的结果在Chou,Golovnev,Sudan和Velusamy的框架中起作用(焦点2021),该框架表征了所有CSP的草图近似性。他们的框架可以自然应用,以对任何特定约束满意度问题的近似性进行计算机辅助分析。我们工作的新颖性在于利用他们的工作来获得同时无限许多问题的分析。

We analyze the sketching approximability of constraint satisfaction problems on Boolean domains, where the constraints are balanced linear threshold functions applied to literals. In~particular, we explore the approximability of monarchy-like functions where the value of the function is determined by a weighted combination of the vote of the first variable (the president) and the sum of the votes of all remaining variables. The pure version of this function is when the president can only be overruled by when all remaining variables agree. For every $k \geq 5$, we show that CSPs where the underlying predicate is a pure monarchy function on $k$ variables have no non-trivial sketching approximation algorithm in $o(\sqrt{n})$ space. We also show infinitely many weaker monarchy functions for which CSPs using such constraints are non-trivially approximable by $O(\log(n))$ space sketching algorithms. Moreover, we give the first example of sketching approximable asymmetric Boolean CSPs. Our results work within the framework of Chou, Golovnev, Sudan, and Velusamy (FOCS 2021) that characterizes the sketching approximability of all CSPs. Their framework can be applied naturally to get a computer-aided analysis of the approximability of any specific constraint satisfaction problem. The novelty of our work is in using their work to get an analysis that applies to infinitely many problems simultaneously.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源