论文标题
基于PMBM的5G MMWAVE车辆网络中的SLAM过滤器
PMBM-based SLAM Filters in 5G mmWave Vehicular Networks
论文作者
论文摘要
基于无线电的车辆同时定位和映射(SLAM)旨在在绘制环境中地标的绘制地标的位置。我们提出了一个基于三个泊松多伯努利混合物(PMBM)的SLAM过滤器的序列,该过滤器以理论上最佳的方式处理整个大满贯问题。三个提出的大满贯过滤器的复杂性逐渐降低,同时通过通过边缘化滋扰参数(媒介物状态或数据关联)的边缘化来得出猛烈的密度近似来维持高精度。首先,PMBM SLAM滤波器是基础,我们为此提供了基于Rao-Blackwellized粒子滤波器的第一个完整描述。其次,Poisson Multi-Bernoulli(PMB)SLAM滤波器基于从PMBM到PMB的标准降低,但涉及基于辅助变量的新颖解释,并且与Bethe自由能的关系。最后,使用相同的辅助变量参数,我们得出一个边缘化的PMB猛击滤波器,该滤镜避免了粒子,而是通过低复杂的cubture kalman滤波器实现。与5G MMWave车辆网络中的概率假设密度(PHD)SLAM过滤器相比,我们评估了三个提出的SLAM过滤器,并显示了它们之间的计算绩效权衡。
Radio-based vehicular simultaneous localization and mapping (SLAM) aims to localize vehicles while mapping the landmarks in the environment. We propose a sequence of three Poisson multi-Bernoulli mixture (PMBM) based SLAM filters, which handle the entire SLAM problem in a theoretically optimal manner. The complexity of the three proposed SLAM filters is progressively reduced while sustaining high accuracy by deriving SLAM density approximation with the marginalization of nuisance parameters (either vehicle state or data association). Firstly, the PMBM SLAM filter serves as the foundation, for which we provide the first complete description based on a Rao-Blackwellized particle filter. Secondly, the Poisson multi-Bernoulli (PMB) SLAM filter is based on the standard reduction from PMBM to PMB, but involves a novel interpretation based on auxiliary variables and a relation to Bethe free energy. Finally, using the same auxiliary variable argument, we derive a marginalized PMB SLAM filter, which avoids particles and is instead implemented with a low-complexity cubature Kalman filter. We evaluate the three proposed SLAM filters in comparison with the probability hypothesis density (PHD) SLAM filter in 5G mmWave vehicular networks and show the computation-performance trade-off between them.