论文标题
一种DG方法,用于具有强施加的对称性的弹性本本征性特征问题
A DG method for a stress formulation of the elasticity eigenproblem with strongly imposed symmetry
论文作者
论文摘要
我们引入了与混合边界条件的弹性特征值问题的纯压力公式。我们提出了基于H(DIV)的不连续的Galerkin方法,该方法强烈强烈施加了应力的对称性,以使本本特征的离散化。在对网格的适当假设和多项式近似程度下,我们证明了离散方案的光谱正确性,并为特征值和本征函数得出了最佳的收敛速率。最后,我们提供了两个和三个维度的数值示例。
We introduce a pure--stress formulation of the elasticity eigenvalue problem with mixed boundary conditions. We propose an H(div)-based discontinuous Galerkin method that imposes strongly the symmetry of the stress for the discretization of the eigenproblem. Under appropriate assumptions on the mesh and the degree of polynomial approximation, we demonstrate the spectral correctness of the discrete scheme and derive optimal rates of convergence for eigenvalues and eigenfunctions. Finally, we provide numerical examples in two and three dimensions.