论文标题
非双线性迪里奇的正常收缩特性
The normal contraction property for non-bilinear Dirichlet forms
论文作者
论文摘要
我们分析了$ \ mathrm {l}^2(x,m)$ over $ \ mathcal e $ $ \ mathcal e $的类别$ \ mathcal e $(x,m)$,用于cipriani和grillo引入的测量空间$(x,m)$,并概括了经典的双线性dirichlet表单。我们研究了这种非线性形式是否验证了正常的收缩属性,即,如果$ \ natcal e(ϕ \ circ f)\ leq \ leq \ leq \ mathcal e(f)$(f)$ in \ in \ in \ mathrm {l}^2(l}^2(x,m)$ $ ϕ(0)= 0 $。我们证明,正常的收缩才能达到,并且仅当$ \ nathcal e $从某种意义上是对称的,$ \ mathcal e(-f)= \ Mathcal e(f),所有$ f \ in \ mathrm {l}^2(x,m)中的所有$ f \ $ f \ in n \ mathrm {l}^2(x,m)。 $ ϕ $。
We analyse the class of convex functionals $\mathcal E$ over $\mathrm{L}^2(X,m)$ for a measure space $(X,m)$ introduced by Cipriani and Grillo and generalising the classic bilinear Dirichlet forms. We investigate whether such non-bilinear forms verify the normal contraction property, i.e., if $\mathcal E(ϕ\circ f) \leq \mathcal E(f)$ for all $f \in \mathrm{L}^2(X,m)$, and all 1-Lipschitz functions $ϕ: \mathbb R \to \mathbb R$ with $ϕ(0)=0$. We prove that normal contraction holds if and only if $\mathcal E$ is symmetric in the sense $\mathcal E(-f) = \mathcal E(f),$ for all $f \in \mathrm{L}^2(X,m).$ An auxiliary result, which may be of independent interest, states that it suffices to establish the normal contraction property only for a simple two-parameter family of functions $ϕ$.