论文标题

通过典型任务相关指导的门控机制连续对象检测

Continual Object Detection via Prototypical Task Correlation Guided Gating Mechanism

论文作者

Yang, Binbin, Deng, Xinchi, Shi, Han, Li, Changlin, Zhang, Gengwei, Xu, Hang, Zhao, Shen, Lin, Liang, Liang, Xiaodan

论文摘要

持续学习是一个充满挑战的现实问题,用于以流媒体方式提供数据时构建成熟的AI系统。尽管连续分类最近取得了进展,但持续对象检测的研究仍会受到每个图像中对象的不同大小和数量的影响。与以前调整所有任务网络的工作不同,在这项工作中,我们提出了一个简单而灵活的框架,用于通过典型的任务相关性指导的门控机制(Rosetta)进行连续对象检测。具体而言,所有任务都共享一个统一的框架,而任务意识到门被引入自动选择特定任务的子模型。通过这种方式,可以通过将其相应的子模块权重中的相应的子模型权重依次记住。为了使Rosetta自动确定哪种经验可用且有用,引入了典型的任务相关性指导性的门控多样性控制器(GDC),以适应基于特定于类的原型的新任务的门的多样性。 GDC模块计算类与类相关矩阵以描绘交叉任务相关性,并在此观察到明显的域间隙,从而激活新任务的独家门。关于可可voc,Kitti-kitchen的全面实验,关于VOC的课堂攻击以及四个任务的顺序学习表明,Rosetta在基于任务和基于类的持续对象检测方面均能产生最先进的性能。

Continual learning is a challenging real-world problem for constructing a mature AI system when data are provided in a streaming fashion. Despite recent progress in continual classification, the researches of continual object detection are impeded by the diverse sizes and numbers of objects in each image. Different from previous works that tune the whole network for all tasks, in this work, we present a simple and flexible framework for continual object detection via pRotOtypical taSk corrElaTion guided gaTing mechAnism (ROSETTA). Concretely, a unified framework is shared by all tasks while task-aware gates are introduced to automatically select sub-models for specific tasks. In this way, various knowledge can be successively memorized by storing their corresponding sub-model weights in this system. To make ROSETTA automatically determine which experience is available and useful, a prototypical task correlation guided Gating Diversity Controller(GDC) is introduced to adaptively adjust the diversity of gates for the new task based on class-specific prototypes. GDC module computes class-to-class correlation matrix to depict the cross-task correlation, and hereby activates more exclusive gates for the new task if a significant domain gap is observed. Comprehensive experiments on COCO-VOC, KITTI-Kitchen, class-incremental detection on VOC and sequential learning of four tasks show that ROSETTA yields state-of-the-art performance on both task-based and class-based continual object detection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源