论文标题

集群算法在基础架构弹性预测模型中的尺寸降低中的应用

Application of Clustering Algorithms for Dimensionality Reduction in Infrastructure Resilience Prediction Models

论文作者

Balakrishnan, Srijith, Cassottana, Beatrice, Verma, Arun

论文摘要

最近的研究越来越多地采用基于模拟的机器学习(ML)模型来分析关键基础设施系统的弹性。对于现实的应用,这些ML模型考虑了影响紧急情况下网络响应的组件级特征。但是,这种方法可能会导致大量特征,并导致ML模型遭受“维度的诅咒”的影响。我们提出了一种基于聚类的方法,该方法同时最大程度地减少了高维性问题,并提高了用于在大规模相互依存的基础架构网络中开发的用于弹性分析的ML模型的预测准确性。该方法具有三个部分:(a)生成仿真数据集,(b)网络组件聚类以及(c)降低预测模型的维度性和开发。首先,相互依存的基础架构模拟模型模拟了各种破坏性事件的网络范围后果。组件级特征是从模拟数据中提取的。接下来,使用基于组件级特征根据其拓扑和功能特征分组组件级特征来得出群集级特征。最后,使用ML算法来开发模型,以使用群集级特征来预测破坏性事件的网络范围影响。该方法的适用性使用相互依赖性的功率 - 传输测试台证明。所提出的方法可用于开发决策支持工具,以恢复基础架构网络的灾后恢复。

Recent studies increasingly adopt simulation-based machine learning (ML) models to analyze critical infrastructure system resilience. For realistic applications, these ML models consider the component-level characteristics that influence the network response during emergencies. However, such an approach could result in a large number of features and cause ML models to suffer from the `curse of dimensionality'. We present a clustering-based method that simultaneously minimizes the problem of high-dimensionality and improves the prediction accuracy of ML models developed for resilience analysis in large-scale interdependent infrastructure networks. The methodology has three parts: (a) generation of simulation dataset, (b) network component clustering, and (c) dimensionality reduction and development of prediction models. First, an interdependent infrastructure simulation model simulates the network-wide consequences of various disruptive events. The component-level features are extracted from the simulated data. Next, clustering algorithms are used to derive the cluster-level features by grouping component-level features based on their topological and functional characteristics. Finally, ML algorithms are used to develop models that predict the network-wide impacts of disruptive events using the cluster-level features. The applicability of the method is demonstrated using an interdependent power-water-transport testbed. The proposed method can be used to develop decision-support tools for post-disaster recovery of infrastructure networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源