论文标题

关于带有标量头发的带电广告的全息复杂性的时间依赖性

On the time dependence of holographic complexity for charged AdS black holes with scalar hair

论文作者

Auzzi, Roberto, Bolognesi, Stefano, Rabinovici, Eliezer, Massolo, Fidel I. Schaposnik, Tallarita, Gianni

论文摘要

在存在标态头发扰动的情况下,Reissner-Nordström黑洞的Cauchy地平线消失了,被爱因斯坦 - 罗森桥的快速崩溃所取代,这导致了Kasner奇异性[1,2]。我们在一类带有毛茸茸的黑洞的模型中研究了体积和动作建议的全息复杂性的时间依赖性。体积复杂性只能探测远离Kasner奇点的黑洞内部的一部分。我们提供了数值证据,表明我们探索的所有参数空间中的体积复杂度率满足了劳埃德的结合。动作复杂性可以探测到时空的一部分,更接近奇点。特别是,在关键时间$ t_c $的复杂性率分歧,惠勒·戴维特(Wheeler-Dewitt)贴片会触及奇点。关键时间之后,动作复杂率接近常数。我们发现,Kasner指数不会直接影响复杂性率在$ t = t_c $和复杂性的延迟时间行为时的差异。劳埃德(Lloyd)的界限在有限时间的动作复杂性违反,因为复杂性率在$ t = t_c $中差异。我们发现,在我们研究的所有参数空间中,劳埃德结合率满足了劳埃德的结合。

In the presence of a scalar hair perturbation, the Cauchy horizon of a Reissner-Nordström black hole disappears and is replaced by the rapid collapse of the Einstein-Rosen bridge, which leads to a Kasner singularity [1,2]. We study the time-dependence of holographic complexity, both for the volume and for the action proposals, in a class of models with hairy black holes. Volume complexity can only probe a portion of the black hole interior that remains far away from the Kasner singularity. We provide numerical evidence that the Lloyd bound is satisfied by the volume complexity rate in all the parameter space that we explored. Action complexity can instead probe a portion of the spacetime closer to the singularity. In particular, the complexity rate diverges at the critical time $t_c$ for which the Wheeler-DeWitt patch touches the singularity. After the critical time the action complexity rate approaches a constant. We find that the Kasner exponent does not directly affect the details of the divergence of the complexity rate at $t=t_c$ and the late-time behaviour of the complexity. The Lloyd bound is violated by action complexity at finite time, because the complexity rate diverges at $t=t_c$. We find that the Lloyd bound is satisfied by the asymptotic action complexity rate in all the parameter space that we investigated.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源