论文标题
隐私会计$ \ VAREPSILON $ CONOMICS:通过后验界改善差异隐私组成
Privacy accounting $\varepsilon$conomics: Improving differential privacy composition via a posteriori bounds
论文作者
论文摘要
差异隐私(DP)是发布汇总数据时广泛用于推理隐私的概念。在本文中,我们观察到某些DP机制可以接受后验隐私分析,该分析利用了这样一个事实,即某些输出泄漏了输入数据库的信息比其他信息更少。为了利用这一现象,我们引入了输出差异隐私(ODP)和新的构图实验,并利用这些新结构来获得大量的隐私预算节省,并改善了组成下的隐私 - 实用性权衡。所有这些都无需支付隐私而付出任何代价。我们不会削弱隐私保证。 为了证明我们的后验隐私分析技术的适用性,我们分析了两种众所周知的机制:稀疏矢量技术和提出的测试释放框架。然后,我们展示如何在更一般的环境中使用我们的技术来保存隐私预算:当差异私有的迭代机制在达到最大迭代次数之前终止,而当DP机制的输出提供不令人满意的效用时。前者的示例包括迭代优化算法,而后者的示例包括训练具有较大概括误差的机器学习模型。我们的技术可以应用于当前论文以外,以完善对现有DP机制的分析或指导未来机制的设计。
Differential privacy (DP) is a widely used notion for reasoning about privacy when publishing aggregate data. In this paper, we observe that certain DP mechanisms are amenable to a posteriori privacy analysis that exploits the fact that some outputs leak less information about the input database than others. To exploit this phenomenon, we introduce output differential privacy (ODP) and a new composition experiment, and leverage these new constructs to obtain significant privacy budget savings and improved privacy-utility tradeoffs under composition. All of this comes at no cost in terms of privacy; we do not weaken the privacy guarantee. To demonstrate the applicability of our a posteriori privacy analysis techniques, we analyze two well-known mechanisms: the Sparse Vector Technique and the Propose-Test-Release framework. We then show how our techniques can be used to save privacy budget in more general contexts: when a differentially private iterative mechanism terminates before its maximal number of iterations is reached, and when the output of a DP mechanism provides unsatisfactory utility. Examples of the former include iterative optimization algorithms, whereas examples of the latter include training a machine learning model with a large generalization error. Our techniques can be applied beyond the current paper to refine the analysis of existing DP mechanisms or guide the design of future mechanisms.