论文标题

车内网络中的异常检测

Anomaly Detection in Intra-Vehicle Networks

论文作者

Dwivedi, Ajeet Kumar

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

The progression of innovation and technology and ease of inter-connectivity among networks has allowed us to evolve towards one of the promising areas, the Internet of Vehicles. Nowadays, modern vehicles are connected to a range of networks, including intra-vehicle networks and external networks. However, a primary challenge in the automotive industry is to make the vehicle safe and reliable; particularly with the loopholes in the existing traditional protocols, cyber-attacks on the vehicle network are rising drastically. Practically every vehicle uses the universal Controller Area Network (CAN) bus protocol for the communication between electronic control units to transmit key vehicle functionality and messages related to driver safety. The CAN bus system, although its critical significance, lacks the key feature of any protocol authentication and authorization. Resulting in compromises of CAN bus security leads to serious issues to both car and driver safety. This paper discusses the security issues of the CAN bus protocol and proposes an Intrusion Detection System (IDS) that detects known attacks on in-vehicle networks. Multiple Artificial Intelligence (AI) algorithms are employed to provide recognition of known potential cyber-attacks based on messages, timestamps, and data packets traveling through the CAN. The main objective of this paper is to accurately detect cyberattacks by considering time-series features and attack frequency. The majority of the evaluated AI algorithms, when considering attack frequency, correctly identify known attacks with remarkable accuracy of more than 99%. However, these models achieve approximately 92% to 97% accuracy when timestamps are not taken into account. Long Short Term Memory (LSTM), Xgboost, and SVC have proved to the well-performing classifiers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源