论文标题
更高形式的对称性,异常的磁流失动力学和全息图
Higher-form symmetries, anomalous magnetohydrodynamics, and holography
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
In $U(1)$ Abelian gauge theory coupled to fermions, the non-conservation of the axial current due to the chiral anomaly is given by a dynamical operator $F_{μν} \tilde{F}^{μν}$ constructed from the field-strength tensor. We attempt to describe this physics in a universal manner by casting this operator in terms of the 2-form current for the 1-form symmetry associated with magnetic flux conservation. We construct a holographic dual with this symmetry breaking pattern and study some aspects of finite temperature anomalous magnetohydrodynamics. We explicitly calculate the charge susceptibility and the axial charge relaxation rate as a function of temperature and magnetic field and compare to recent lattice results. At small magnetic fields we find agreement with elementary hydrodynamics weakly coupled to an electrodynamic sector, but we find deviations at larger fields.