论文标题

跨语言语言理解的标签意识到的多层次对比学习

Label-aware Multi-level Contrastive Learning for Cross-lingual Spoken Language Understanding

论文作者

Liang, Shining, Shou, Linjun, Pei, Jian, Gong, Ming, Zuo, Wanli, Zuo, Xianglin, Jiang, Daxin

论文摘要

尽管口语理解(SLU)在高资源语言中取得了巨大的成功,但在低资源语言中,这仍然具有挑战性,这主要是由于缺乏标记的培训数据。最近的多语言代码转换方法通过在零摄像的跨语言SLU中构建混合语言上下文来实现跨语言模型表示的更好对齐。但是,当前的代码切换方法仅限于隐式对齐,并无视SLU中固有的语义结构,即,层次结构包含话语,插槽和单词。在本文中,我们建议通过在话语,插槽和单词级别上的多层次对比学习框架来对话语 - 插槽词结构进行建模,以促进明确的一致性。引入了新颖的代码切换方案,以为我们的对比学习框架生成硬性否定示例。此外,我们开发了一种标签感知的联合模型,利用标签语义来增强隐式对准和对比度学习的馈示。我们的实验结果表明,我们提出的方法与两个零射击跨语言SLU基准数据集的强基线相比显着提高了性能。

Despite the great success of spoken language understanding (SLU) in high-resource languages, it remains challenging in low-resource languages mainly due to the lack of labeled training data. The recent multilingual code-switching approach achieves better alignments of model representations across languages by constructing a mixed-language context in zero-shot cross-lingual SLU. However, current code-switching methods are limited to implicit alignment and disregard the inherent semantic structure in SLU, i.e., the hierarchical inclusion of utterances, slots, and words. In this paper, we propose to model the utterance-slot-word structure by a multi-level contrastive learning framework at the utterance, slot, and word levels to facilitate explicit alignment. Novel code-switching schemes are introduced to generate hard negative examples for our contrastive learning framework. Furthermore, we develop a label-aware joint model leveraging label semantics to enhance the implicit alignment and feed to contrastive learning. Our experimental results show that our proposed methods significantly improve the performance compared with the strong baselines on two zero-shot cross-lingual SLU benchmark datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源