论文标题
部分可观测时空混沌系统的无模型预测
Tuning the magnetic anisotropy and topological phase with electronic correlation in single-layer H-FeBr$_2$
论文作者
论文摘要
电子相关性可以强烈影响具有开放式D或F-轨道的二维(2D)材料的电子特性。在此,通过服用单层(SL)H-Febr $ _2 $作为SL H-FEX $ _2 $(X = Cl,Br,I)家族的代表,我们研究了基于DFT+\ textIt {u textit {u}的磁性各种系统计算的磁相关效应。我们的结果是,Sl H-Febr $ _2 $的磁各向异性能量(MAE)显示出非单调的演化行为,电子相关强度的增加,这主要是由于FE和BR的不同元素分辨MA之间的竞争。进一步的研究表明,元素分辨MAE的演变是由于每个原子中不同轨道之间的自旋轨道耦合(SOC)相互作用的变化。此外,调整电子相关性的强度会驱动频段反转的发生,从而导致系统经历多个拓扑相变,从而导致量子异常的山谷霍尔(qAVH)效应。对于SL H-FEX $ _2 $(X = Cl,Br,I)家族,这些异国情调的特性是通用的。我们的工作阐明了电子相关效应在SL H-fex $ _2 $(X = Cl,Br,I)家族中调谐磁和电子结构中的作用,该家族可以指导基于这些材料开发新的Spintronics和Valleytronics设备的进步。
Electronic correlation can strongly influence the electronic properties of two-dimensional (2D) materials with open d- or f-orbitals. Herein, by taking single-layer (SL) H-FeBr$_2$ as a representative of the SL H-FeX$_2$ (X=Cl, Br, I) family, we investigated the electronic correlation effects in the magnetic anisotropy and electronic topology of such a system based on first-principles calculations with DFT+\textit{U} approach. Our result is that the magnetic anisotropy energy (MAE) of SL H-FeBr$_2$ shows a non-monotonic evolution behaviour with increasing electronic correlation strength, which is mainly due to the competition between different element-resolved MAEs of Fe and Br. Further investigations show that the evolution of element-resolved MAE arises from the variation of the spin-orbital coupling (SOC) interaction between different orbitals in each atom. Moreover, tuning the strength of the electronic correlation can drive the occurrence of band inversions, causing the system to undergoes multiple topological phase transitions, resulting in a quantum anomalous valley Hall (QAVH) effect. These exotic properties are universal for the SL H-FeX$_2$ (X = Cl, Br, I) family. Our work sheds light on the role of electronic correlation effects in tuning magnetic and electronic structures in the SL H-FeX$_2$ (X = Cl, Br, I) family, which could guide advances in the development of new spintronics and valleytronics devices based on these materials.