论文标题

深入嵌入的多视图聚类通过共同学习潜在表示和图形

Deep Embedded Multi-View Clustering via Jointly Learning Latent Representations and Graphs

论文作者

Huang, Zongmo, Ren, Yazhou, Pu, Xiaorong, He, Lifang

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

With the representation learning capability of the deep learning models, deep embedded multi-view clustering (MVC) achieves impressive performance in many scenarios and has become increasingly popular in recent years. Although great progress has been made in this field, most existing methods merely focus on learning the latent representations and ignore that learning the latent graph of nodes also provides available information for the clustering task. To address this issue, in this paper we propose Deep Embedded Multi-view Clustering via Jointly Learning Latent Representations and Graphs (DMVCJ), which utilizes the latent graphs to promote the performance of deep embedded MVC models from two aspects. Firstly, by learning the latent graphs and feature representations jointly, the graph convolution network (GCN) technique becomes available for our model. With the capability of GCN in exploiting the information from both graphs and features, the clustering performance of our model is significantly promoted. Secondly, based on the adjacency relations of nodes shown in the latent graphs, we design a sample-weighting strategy to alleviate the noisy issue, and further improve the effectiveness and robustness of the model. Experimental results on different types of real-world multi-view datasets demonstrate the effectiveness of DMVCJ.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源