论文标题

马尔可夫连锁店生成的距离无知统计的距离安全密码

Entropically secure cipher for messages generated by Markov chains with unknown statistics

论文作者

Ryabko, Boris

论文摘要

2002年,罗素(Russell)和王(Wang)提出了在秘密密钥密码学框架内开发的熵安全性的定义。熵安全系统是无条件安全的,也就是说,无论敌人的计算能力如何,都无法破坏。 2004年,多德斯(Dodis)和史密斯(Smith)开发了罗素和王的结果,尤其是指出,熵保护对称的​​对称加密方案的概念对于密码学来说至关重要,因为可以用钥匙构建熵保护的对称对称的对称加密方案,而比密钥短得多。输入数据的长度,这使您可以绕过香农键长度上著名的下限。在本报告中,我们为一个未知统计的马尔可夫链生成了加密消息的情况。所需秘密键的长度与消息长度的对数成正比(与一次性垫的消息本身相反)。

In 2002, Russell and Wang proposed a definition of entropically security that was developed within the framework of secret key cryptography. An entropically-secure system is unconditionally secure, that is, unbreakable, regardless of the enemy's computing power. In 2004, Dodis and Smith developed the results of Russell and Wang and, in particular, stated that the concept of an entropy-protected symmetric encryption scheme is extremely important for cryptography, since it is possible to construct entropy-protected symmetric encryption schemes with keys much shorter than the keys. the length of the input data, which allows you to bypass the famous lower bound on the length of the Shannon key. In this report, we propose an entropy-protected scheme for the case where the encrypted message is generated by a Markov chain with unknown statistics. The length of the required secret key is proportional to the logarithm of the length of the message (as opposed to the length of the message itself for the one-time pad).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源