论文标题
基于STL的网络物理系统中的弹性配方
An STL-based Formulation of Resilience in Cyber-Physical Systems
论文作者
论文摘要
弹性是从违规行为中快速恢复并尽可能长时间避免违规行为的能力。这种财产对于网络物理系统(CPS)至关重要,但是迄今为止,尚无对CPS弹性的正式处理。我们提出了一个基于STL的框架,用于推理CP中的弹性,其中弹性具有基于STL的弹性规范(SRS)的形式的句法表征。在给定任意的stl公式$φ$,时间范围$α$和$β$,$φ$,$ r_ {α,β}(φ)$的Srs是stl公式$ \ neg或neg或negbf {u} _ {u} _ {[0,α]}} \ m m iesition;从违反$φ$的情况下发生在$α$(可恢复性)之内,随后将$φ$保持在持续时间$β$(耐用性)。这些$ r $ - 表达是我们的SRS逻辑中的原子,可以使用STL操作员组合,从而允许一个人表达复合弹性规格,例如,多个SRS必须同时保持多个SRS,否则系统必须最终具有弹性。我们以弹性满意度值(RESV)函数$ r $的形式为SRSS定义了定量语义,并证明其健全性和完整性W.R.T. STL的布尔语义学。 $ r $ - 值$ r_ {α,β}(φ)$ ATOMS是一个单身套件,其中包含一对量化可恢复性和耐用性。鉴于子形式的RESV可能无法直接可比性,用于复合SRS公式的$ r $ - 值会导致一组非主导的可回耐用性对(例如,一个子形式具有较高的耐用性,但比另一个子形式更可恢复能力)。据我们所知,这是基于STL的逻辑的第一个多维定量语义。两个案例研究表明了我们方法的实际实用性。
Resiliency is the ability to quickly recover from a violation and avoid future violations for as long as possible. Such a property is of fundamental importance for Cyber-Physical Systems (CPS), and yet, to date, there is no widely agreed-upon formal treatment of CPS resiliency. We present an STL-based framework for reasoning about resiliency in CPS in which resiliency has a syntactic characterization in the form of an STL-based Resiliency Specification (SRS). Given an arbitrary STL formula $φ$, time bounds $α$ and $β$, the SRS of $φ$, $R_{α,β}(φ)$, is the STL formula $\negφ\mathbf{U}_{[0,α]}\mathbf{G}_{[0,β)}φ$, specifying that recovery from a violation of $φ$ occur within time $α$ (recoverability), and subsequently that $φ$ be maintained for duration $β$ (durability). These $R$-expressions, which are atoms in our SRS logic, can be combined using STL operators, allowing one to express composite resiliency specifications, e.g., multiple SRSs must hold simultaneously, or the system must eventually be resilient. We define a quantitative semantics for SRSs in the form of a Resilience Satisfaction Value (ReSV) function $r$ and prove its soundness and completeness w.r.t. STL's Boolean semantics. The $r$-value for $R_{α,β}(φ)$ atoms is a singleton set containing a pair quantifying recoverability and durability. The $r$-value for a composite SRS formula results in a set of non-dominated recoverability-durability pairs, given that the ReSVs of subformulas might not be directly comparable (e.g., one subformula has superior durability but worse recoverability than another). To the best of our knowledge, this is the first multi-dimensional quantitative semantics for an STL-based logic. Two case studies demonstrate the practical utility of our approach.