论文标题

Wiener空间上Weyl的假差分线的阳性结果

Positivity results for Weyl's pseudodifferential calculus on the Wiener space

论文作者

Jager, Lisette

论文摘要

本文介绍了假数分化的演算的阳性特性,概括了Weyl的经典量化,并将其设置在无限的维相空间,即Wiener空间。在此框架中,我们表明一个正符号通常不会给出一个正面操作员。为了衡量非积极性,我们建立了Gårding的不平等,该不平等适用于手头的符号类别。然而,对于具有径向方面的符号,其他假设可确保相关操作员的积极性。

This paper deals with positivity properties for a pseudodifferential calculus, generalizing Weyl's classical quantization, and set on an infinite dimensional phase space, the Wiener space. In this frame, we show that a positive symbol does not, in general, give a positive operator. In order to measure the nonpositivity, we establish a Gårding's inequality, which holds for the symbol classes at hand. Nevertheless, for symbols with radial aspects, additional assumptions ensure the positivity of the associated operator.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源