论文标题
阿贝尔类别的派生和扩展维度
The derived and extension dimensions of abelian categories
论文作者
论文摘要
对于Abelian类别$ \ Mathcal {a} $,我们在其派生和扩展维度之间建立了关系。然后,对于Artin代数$λ$,我们给出了$λ$的根部层长度的扩展维度的上限,以及某些简单的$λ$ - 模式的某些相对投影(或注射式)维度,从中引起了$λ$的一些新上限。
For an abelian category $\mathcal{A}$, we establish the relation between its derived and extension dimensions. Then for an artin algebra $Λ$, we give the upper bounds of the extension dimension of $Λ$ in terms of the radical layer length of $Λ$ and certain relative projective (or injective) dimension of some simple $Λ$-modules, from which some new upper bounds of the derived dimension of $Λ$ are induced.