论文标题

阿贝尔类别的派生和扩展维度

The derived and extension dimensions of abelian categories

论文作者

Zheng, Junling, Huang, Zhaoyong

论文摘要

对于Abelian类别$ \ Mathcal {a} $,我们在其派生和扩展维度之间建立了关系。然后,对于Artin代数$λ$,我们给出了$λ$的根部层长度的扩展维度的上限,以及某些简单的$λ$ - 模式的某些相对投影(或注射式)维度,从中引起了$λ$的一些新上限。

For an abelian category $\mathcal{A}$, we establish the relation between its derived and extension dimensions. Then for an artin algebra $Λ$, we give the upper bounds of the extension dimension of $Λ$ in terms of the radical layer length of $Λ$ and certain relative projective (or injective) dimension of some simple $Λ$-modules, from which some new upper bounds of the derived dimension of $Λ$ are induced.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源